鎂鋁合金材料研究β顆粒與鋁網絡相結合的硬化機理。本研究以6060合金為研究對象,研究了位錯晶格與析出的相互作用。由于熱處理的可能性,鎂鋁合金材料具有很高的建模其組織和性能的潛力。通過分析該合金的過飽和過程和隨后的時效過程,可以獲得所假定的性能。鎂鋁合金材料硬化相在晶界處非均勻成核,析出鐵元素,這在AlMgSi合金中一直存在。鎂鋁合金材料硬化相β″析出。它們的長大與Mg2Si相的形成有關。大的Mg2
2021-04-14 11:59:00
合金材料采用均勻化工藝對坯料進行均勻化處理。在一臺35 MN壓力機上進行型材(四孔模具)的擠壓,擠壓過程如下:每一種合金中,有3個鋼坯按該形狀的擠壓柱的標準速度擠壓,其中合金材料3個鋼坯的擠壓柱速度提高了20%。擠壓鋼坯的溫度和擠壓容器的溫度都是相同的。所有擠壓型材在壓力機跳動臺上飽和,然后在爐中人工老化至T66。合金材料對每個孔分別取三個擠壓斷面樣品,檢查截面的強度性能和材料硬度。在疲勞試驗機上
2021-04-14 11:56:28
鋁合金材料在0.5% HF酸溶液中蝕刻——這種方法突出了微結構中存在的粒子。用1.8 ml HBF4 + 100 ml水彩對比劑組成的巴克試劑對單個晶粒進行偏振光觀察。在SHIMADZ HMV-G硬度計上,鋁合金材料采用維氏法進行顯微硬度測量。對金相試樣進行100 g (HV0.1)載荷下的顯微硬度測試,承受載荷的時間為10 s。利用JEOL JSM-6460LV掃描電子顯微鏡和EDS顯微分析儀觀
2021-04-14 11:51:31
鋁合金材料的亞晶粒尺寸通常達到幾個微米的限值。隨著繼續(xù)變形,亞晶粒尺寸通常不會進一步減小。對于熱擠壓,擠壓壓力p與染色率成正比。隨著應變速率的增加,擠壓壓力也呈近似線性增加。隨著沖壓速度的增加,擠壓壓力也隨著應變速率的增加而增加。然而,熱擠壓時,隨著工作溫度的升高,擠壓壓力降低。鋁合金材料擠壓速度受坯料溫度的影響有一定的限制。這意味著高速合金的技術應用需要一些實驗開發(fā)的擠壓參數。溫度與擠出速度的關
2021-04-13 15:54:52
金屬合金材料這導致擠壓結構要么包含亞晶粒,理想情況下不發(fā)生靜態(tài)再結晶,要么由連續(xù)的動態(tài)、元動態(tài)和靜態(tài)再結晶形成晶粒。結果表明,這兩種結構都與流行的齊納-霍洛蒙(Z- h)參數Z有關,也可以由Z控制。因此,金屬合金材料性能與Z也有一定的關系其中e˙為應變率,Q為活化能,R為氣體常數,T為溫度。參數隨應變速率的減小和溫度的升高而減小。在實際工業(yè)生產中,為了避免裂紋的發(fā)生,通常首選低Z條件(低應變速率和
2021-04-13 15:53:05
合金材料對所得數據的分析表明,合金材料在熱處理的變體19中,屈服點達到了標準中假定的水平。取得的成果是一項重大的技術成果,有望取得較好的經濟效益。研究表明,可以生產一種更便宜的合金基合金元素含量較低,這種合金可以提高60%的擠壓速率,并且通過適當的熱處理,合金材料可以達到與含有較高Mg和Si元素的合金相當的性能水平。與目前使用的合金相比,新型高速擠壓合金具有更高的延展性,可以在單位時間內生產更大噸
2021-04-13 15:50:05
研究擠壓速率對鋁合金材料元素含量最低合金的性能、組織和相組成的影響,使用最低鋁合金材料成分含量、最便宜的合金1,同時優(yōu)化擠壓速率以獲得最高效的工藝,這一潛在可能性為研究熱處理優(yōu)化以達到標準要求的性能奠定了基礎。對鋁合金材料的組織、性能和相組成進行了測試。隨著擠壓速率的增加,擠壓態(tài)合金1的宏觀組織和顯微組織。其特征為中等尺寸(中弦參數)的等軸晶粒,尺寸在46 ~ 54 μm之間。熱加工使組織和晶粒均
2021-04-13 15:46:55
鋁合金材料通過人工神經網絡(ANN)、自適應神經模糊推理系統(tǒng)(ANFIS)和田口變異數分析來確定關鍵參數。工程應用中的非線性問題,如函數逼近、數據分類、數據處理和系統(tǒng)控制等,都可以用軟計算方法輕松地解決。盡管鋁合金材料許多不同的方法被用于這個目的,我們可以說最受歡迎和最廣泛使用的方法是田口,安和簡稱ANFIS方法由于最小誤差等因素,最大的精確度,快,成本,和時間預測,決策分析,優(yōu)化、建模和復雜問題
2021-04-12 11:59:07
合金材料采用田口試驗設計和方差分析,對攪拌鑄造工藝制備的LM25/粉煤灰合金材料的磨損性能(SWR:比磨損率)進行了優(yōu)化。以滑速、荷載、配筋和滑距為輸入因素,采用L27正交設計(三層四因素)“越小越好”的準則進行試驗設計。與其他輸入變量相比,負載的變化對SWR的影響更大。結果表明,優(yōu)化模型降低了合金材料的比磨損率,并證實了優(yōu)化參數提高了合金材料的耐磨性。他們還說田口法在優(yōu)化特定磨損率方面很有用,所
2021-04-12 11:56:13
用ANFIS預測了6061 Al-15% SiC金屬基合金材料的流變應力值。在不同應變速率和溫度下對金屬基合金材料進行熱壓縮試驗。在所使用的ANFIS模型中,有17條規(guī)則,17個隸屬函數(MF),輸入MF為高斯型,線性參數為68,非線性參數為102。訓練數據樣本88個,檢驗數據樣本12個。采用平均誤差百分比(PME)和均方根誤差(RMSE)作為性能指標。ANFIS預測流變應力PME值小于1.4%。
2021-04-12 11:51:15
復合金材料是當前市場上非常熱銷的一種新型材料,在很多領域都可以看到復合金材料的使用。對于很多高科技領域來說,復合金材料的使用可以有效的提高科技水平。目前采用人工神經網絡和田口對Al5059/SiC/MoS2復合金材料的工藝參數和實驗變量進行了優(yōu)化。5個輸入變量和6個輸出變量以及27個數據被用于神經網絡模型的訓練和測試。輸出變量的性能由R2決定:表面粗糙度為98.12%,溫度為98.63%,徑向力為
2021-04-12 11:47:17
銅鎳合金材料在設計階段考慮到材料和制造過程的內在可變性。銅鎳合金材料沒有給實驗設計帶來理論創(chuàng)新。然而,它在生產應用方面進行了創(chuàng)新,并使該方法在制造部門獲得了成功的應用。傳統(tǒng)的實驗設計難以使用,特別是在需要進行大量實驗和增加加工參數時。因此,銅鎳合金材料實驗設計方法確保多個因素同時考慮,但也確保獲得最優(yōu)的結果通過執(zhí)行更少的實驗實驗設計(DOE)田口是用來設計實驗運行布局,研究水平的變化過程的影響參數
2021-04-09 11:48:58
金屬合金材料在田口技術可用于任何情況下,有檢查操作??蓹z查的操作可以是一個真實的設備測試,數學方程,或計算機模式,可以充分模式的許多產量或操作的答復。金屬合金材料實驗完成后,應指定DOE中最合適的參數配置。為了檢查結果,在田口技術中,信噪比(S/N ratio)是一種性能計算,用于選擇可以處理噪聲并考慮平均和可變性的檢查水平,作為性能標準。作為最后一步,金屬合金材料使用對檢查變量的最佳預測水平進行
2021-04-09 11:45:57
推導并給出了計算復合金材料磨損體積損失的數學公式。利用所制備的復合材料配方,研究了輸入變量對復合金材料磨損體積損失的影響。復合金材料的磨損體積損失隨滑動距離、刀具橫移和旋轉速度的增加而顯著增加。當夾雜比為50% TiC +50% Al2O3時,復合增強復合金材料的磨損體積損失最小。結果表明,該配方可用于預測復合材料的磨損量,從而降低時間和生產成本。詳細研究了FSP參數和雜化比對Al基5083雜化復
2021-04-09 11:43:20
鎂鋁合金材料優(yōu)化的體系結構為帶有邏輯s型傳遞函數的12-12-1體系結構。鎂鋁合金材料采用R、MSE和MAE值作為誤差標準。在測試集中得到最小的MSE和MAE值以及最大的R值。輸入矢量對Al-Mg2Si復合材料UTS的靈敏度如圖8所示。Mg對Al-Mg2Si復合材料的抗拉強度影響較大,因為鎂鋁合金材料相的尺寸和形貌與含Mg和Si元素復合材料的力學性能呈線性關系。結果表明,所有的數據集都具有較高的相
2021-04-09 11:40:49
采用金屬基復合材料設計神經自適應學習技術能夠開發(fā)一個模型,通過使用模糊建模過程的數據集來“學習”系統(tǒng)。換句話說,ANFIS通過單獨使用輸入/輸出數據集反向傳播(BP)算法或結合最小二乘法編輯隸屬度函數參數來創(chuàng)建模糊推理系統(tǒng)(FIS)。采用金屬基復合材料設計這樣的安排使得系統(tǒng)可以借助我們的模糊系統(tǒng)所建模的數據來學習相關的系統(tǒng)。換句話說,它會根據將要建模的數據進行調整。因此,它具有很強的適應性。由于自
2021-04-08 11:56:22
立承德科技(上海)生產基地
地址:上海市寶山區(qū)蕰川路5300弄1號
電話: +86-21-3638-0189
傳真: +86-21-3638-0109
郵箱:[email protected]
立承德科技(深圳)有限公司
地址:廣東省深圳市福田區(qū)彩田路 3069 號星河世紀A棟1001室
電話:+86-755-8256-1631
傳真: +86-755-8256-1691
郵箱:[email protected]
熱線:+86-400 882 8982